Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The structured singular value (SSV), or , is used to assess the robust stability and performance of an uncertain linear time‐invariant system. Existing algorithms compute upper and lower bounds on the SSV for structured uncertainties that contain repeated (real or complex) scalars and/or nonrepeated complex full‐blocks. This paper presents algorithms to compute bounds on the SSV for the case of repeated complex full‐blocks. This specific class of uncertainty is relevant for the input‐output analysis of many convective systems, such as fluid flows. Specifically, we present a power iteration to compute the SSV lower bound for the case of repeated complex full‐blocks. This generalizes existing power iterations for repeated complex scalars and nonrepeated complex full‐blocks. The upper bound can be formulated as a semi‐definite program (SDP), which we solve using a standard interior‐point method to compute optimal scaling matrices associated with the repeated full‐blocks. Our implementation of the method only requires gradient information, which improves the computational efficiency of the method. Finally, we test our proposed algorithms on an example model of incompressible fluid flow. The proposed methods provide less conservative bounds as compared to prior results, which ignore the repeated full‐block structure.more » « less
-
The dynamics of incompressible fluid flows are governed by a non-normal linear dynamical system in feedback with a static energy-conserving nonlinearity. These dynamics can be altered using feedback control but verifying performance of a given control law can be challenging. The conventional approach is to perform a campaign of high-fidelity direct numerical simulations to assess performance over a wide range of parameters and disturbance scenarios. In this paper, we propose an alternative simulation-free approach for controller verification. The incompressible Navier-Stokes equations are modeled as a linear system in feedback with a static and quadratic nonlinearity. The energy conserving property of this nonlinearity can be expressed as a set of quadratic constraints on the system, which allows us to perform a nonlinear stability analysis of the fluid dynamics with minimal complexity. In addition, the Reynolds number variations only influence the linear dynamics in the Navier-Stokes equations. Therefore, the fluid flow can be modeled as a parameter-varying linear system (with Reynolds number as the parameter) in feedback with a quadratic nonlinearity. The quadratic constraint framework is used to determine the range of Reynolds numbers over which a given flow will be stable, without resorting to numerical simulations. We demonstrate the framework on a reduced-order model of plane Couette flow. We show that our proposed method allows us to determine the critical Reynolds number, largest initial disturbance, and a range of parameter variations over which a given controller will stabilize the nonlinear dynamics.more » « less
An official website of the United States government
